Муниципальное казенное общеобразовательное учреждение «Ермолаевская средняя общеобразовательная школа»

Согласовано заместителем директора

по учебной работе

Корневой Д.А.

Утверждено директором МКОУ «Ермолаевская СОШ» Приказ № 148 от «30» августа 2023 г.

Рабочая программа по математике в 9 классе

Составитель: Учитель Кузнецова Елена Николаевна МКОУ «Ермолаевская СОШ»

2023 год

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Данная рабочая программа по математике разработана на основе:

- 1. Федерального государственного образовательного стандарта основного общего образования, утвержденного приказом Министерства образования и науки РФ от 17 декабря 2010 года № 1897:
- 2. Приказа Министерства образования и науки Российской Федерации от 31.12.2015 № 1577 «О внесении изменений в федеральный государственный образовательный стандарт основного общего образования, утвержденный приказом Министерства образования и науки Российской Федерации от 17 декабря 2010 г. № 1897» (Зарегистрирован в Минюсте России 02.02.2016 № 40937);
- 3. Программы. Математика. 5-6 классы. Алгебра. 7-9 классы. Алгебра и начала анализа. 10-11 классы/ авт.-сост. И.И. Зубарева, А.Г. Мордкович. М.: Мнемозина, 2009. 63 с.;
- 4.Программы общеобразовательных учреждений: Геометрия, 7-9 классы. Составитель Бурмистрова Т. А. М.: Просвещение, 2016.

Данная программа использует УМК:

- 1. Мордкович А.Г. Алгебра 9 кл. Ч.1:учебник/А.Г.Мордкович. М.:Мнемозина, 2019
- 2. Мордкович А.Г. Алгебра 9 кл. Ч.2:задачник/А.Г.Мордкович и др..– М.:Мнемозина,2019
- 3. Александрова Л.А. Алгебра 9 кл.: контрольные работы/ Л.А.Александрова. М.:Мнемозина
- 4. Мордкович А.Г. Алгебра 9 кл. пособие для учителя/А.Г.Мордкович. М.:Мнемозина.
- 5. Геометрия, 7—9 классы: учебник для общеобразовательных учреждений /Л. С. Атанасян, В.Ф. Бутузов, С.В. Кадомцев и др. М.: Просвещение, 2019.

Согласно учебному плану МКОУ «Ермолаевская СОШ» на изучение предмета «Математика» выделяется в 9 классе 170 часов (5 ч в неделю).

Рабочая программа предусматривает обучение алгебре в 9 классах в объеме 102 часа, в неделю – 3 ч. контрольных работ - 7; пробное итоговое тестирование $O\Gamma \Im = 2$ ч.

В курсе алгебры можно выделить следующие основные содержательные линии: арифметика; алгебра; функции; вероятность и статистика. Наряду с этим в содержание включены два дополнительных методологических раздела: логика и множества; математика в историческом развитии, что связано с реализацией целей обще интеллектуального и общекультурного развития учащихся. Содержание каждого из этих разделов разворачивается в содержательно-методическую линию, пронизывающую все основные содержательные линии. При этом первая линия — «Логика и множества» — служит цели овладения учащимися некоторыми элементами универсального математического языка, вторая — «Математика в историческом развитии» — способствует созданию общекультурного, гуманитарного фона изучения курса.

Содержание линии «Алгебра» способствует формированию у учащихся математического аппарата для решения задач из разделов математики, смежных предметов и окружающей реальности. Язык алгебры подчёркивает значение математики как языка для построения математических моделей процессов и явлений реального мира.

І. Планируемые результаты изучения учебного предмета

Личностные, метапредметные и предметные результаты освоения содержания курса Программа обеспечивает достижение следующих результатов:

личностные:

- 1. сформированность ответственного отношения к учению, готовность и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, выбору дальнейшего образования на базе ориентировки в мире профессий и профессиональных предпочтений, осознанному построению индивидуальной образовательной траектории с учётом устойчивых познавательных интересов;
- 2. сформированность целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики;

- 3. сформированность коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими, в образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятельности;
- 4. умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной
- 5. представление о математической науке как сфере человеческой деятельности, об этапах её развития, о её значимости для развития цивилизации;
- 6. критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
- 7. креативность мышления, инициатива, находчивость, активность при решении алгебраических задач;
- 8. умение контролировать процесс и результат учебной математической деятельности;
- 9. способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений.

<u>Метапредметные</u>:

- 1. умение самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
- 2. умение осуществлять контроль по результату и по способу действия на уровне произвольного внимания и вносить необходимые коррективы;
- 3. умение адекватно оценивать правильность или ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения;
- 4. осознанное владение логическими действиями определения понятий, обобщения, установления аналогий, классификации на основе самостоятельного выбора оснований и критериев, установления родовидовых связей;
- 5. умение устанавливать причинно-следственные связи; строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и выводы;
- 6. умение создавать, применять и преобразовывать знаково- символические средства, модели и схемы для решения учебных и познавательных задач;
- 7. умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределение функций и ролей участников, взаимодействие и общие способы работы; умение работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; слушать партнёра; формулировать, аргументировать и отстаивать своё мнение;
- 8. сформированность учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности);
- 9. первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;
- 10. умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
- 11. умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
- 12. умение понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;
- 13. умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;
- 14. умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;

- 15. понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;
- 16. умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
- 17. умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера. _

*Предметны*е:

- 1. умение работать с математическим текстом (структурирование, извлечение необходимой информации), точно и грамотно выражать свои мысли в устной и письменной речи, применяя математическую терминологию и символику, использовать различные языки математики (словесный, символический, графический), обосновывать суждения, проводить классификацию, доказывать математические утверждения;
- 2. овладение базовым понятийным аппаратом: иметь представление о числе, владение символьным языком алгебры, знание элементарных функциональных зависимостей, формирование представлений о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;
- 3. умение выполнять алгебраические преобразования рациональных выражений, применять их для решения учебных математических задач и задач, возникающих в смежных учебных предметах;
- 4. умение пользоваться математическими формулами и самостоятельно составлять формулы зависимостей между величинами на основе обобщения частных случаев и эксперимента;
- 5. умение решать линейные и квадратные уравнения неравенства, а также приводимые к ним уравнения, неравенства, системы; применять графические представления для решения и исследования уравнений. неравенств, систем; применять полученные умения для решения задач из математики, смежных предметов, практики;
- 6. овладение системой функциональных понятий, функциональным языком и символикой, умение строить графики функций, описывать их свойства, использовать функционально-графические представления для описания и анализа математических задач и реальных зависимостей;
- 7. овладение основными способами представления и анализа статистических данных; умение решать задачи на нахождение частоты и вероятности случайных событий;
- 8. умение применять изученные понятия, результаты и методы при решении задач из различных разделов курса, в том числе задач, не сводящихся к непосредственному применению известных алгоритмов.

Предметным результатом изучения курса алгебры 9 класса является сформированность следующих умений:

РАЦИОНАЛЬНЫЕ ЧИСЛА

Выпускник научится:

- 1) понимать особенности десятичной системы счисления;
- 2) владеть понятиями, связанными с делимостью натуральных чисел;
- 3) выражать числа в эквивалентных формах, выбирая наиболее подходящую в зависимости от конкретной ситуации;
 - 4) сравнивать и упорядочивать рациональные числа;
- 5) выполнять вычисления с рациональными числами, сочетая устные и письменные приёмы вычислений, применять калькулятор;
- 6) использовать понятия и умения, связанные с пропорциональностью величин, процентами в ходе решения математических задач и задач из смежных предметов, выполнять несложные практические расчёты.

Выпускник получит возможность:

- I. познакомиться с позиционными системами счисления с основаниями, отличными от 10;
- 2. углубить и развить представления о натуральных числах и свойствах делимости;

3. научиться использовать приёмы, рационализирующие вычисления, приобрести привычку контролировать вычисления, выбирая подходящий для ситуации способ.

ДЕЙСТВИТЕЛЬНЫЕ ЧИСЛА

Выпускник научится:

- 1) использовать начальные представления о множестве действительных чисел;
- 2) владеть понятием квадратного корня, применять его в вычислениях.

Выпускник получит возможность:

- I. развить представление о числе и числовых системах от натуральных до действительных чисел; о роли вычислений в человеческой практике;
- 2. развить и углубить знания о десятичной записи действительных чисел (периодические и непериодические дроби).

ИЗМЕРЕНИЯ, ПРИБЛИЖЕНИЯ, ОЦЕНКИ

Выпускник научится:

1) использовать в ходе решения задач элементарные представления, связанные с приближёнными значениями величин.

Выпускник получит возможность:

- 1. понять, что числовые данные, которые используются для характеристики объектов окружающего мира, являются преимущественно приближёнными, что по записи приближённых значений, содержащихся в информационных источниках, можно судить о погрешности приближения;
- 2. понять, что погрешность результата вычислений должна быть соизмерима с погрешностью исходных данных.

АЛГЕБРАИЧЕСКИЕ ВЫРАЖЕНИЯ

Выпускник научится:

- 1) владеть понятиями «тождество», «тождественное преобразование», решать задачи, содержащие буквенные данные; работать с формулами;
- 2) выполнять преобразования выражений, содержащих степени с целыми показателями и квадратные корни;
- 3) выполнять тождественные преобразования рациональных выражений на основе правил действий над многочленами и алгебраическими дробями; 4) выполнять разложение многочленов на множители.

Выпускник получит возможность:

- 1. научиться выполнять многошаговые преобразования рациональных выражений, применяя широкий набор способов и приёмов;
- 2. применять тождественные преобразования для решения задач из различных разделов курса (например, для нахождения наибольшего/наименьшего значения выражения).

УРАВНЕНИЯ

Выпускник научится:

- 1) решать основные виды рациональных уравнений с одной переменной, системы двух уравнений с двумя переменными;
- 2) понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом;
- 3) применять графические представления для исследования уравнений, исследования и решения систем уравнений с двумя переменными.

Выпускник получит возможность:

- 1. овладеть специальными приёмами решения уравнений и систем уравнений; уверенно применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов, практики;
- 2. применять графические представления для исследования уравнений, систем уравнений; содержащих буквенные коэффициенты.

HEPABEHCTBA

Выпускник научится:

- 1) понимать и применять терминологию и символику, связанные с отношением неравенства, свойства числовых неравенств;
- 2) решать линейные неравенства с одной переменной и их системы; решать квадратные неравенства с опорой на графические представления;
 - 3) применять аппарат неравенств, для решения задач из различных разделов курса.

Выпускник получит возможность научиться:

- 1. разнообразным приёмам доказательства неравенств; уверенно применять аппарат неравенств для решения разнообразных математических задач и задач из смежных предметов, практики;
- 2. применять графические представления для исследования неравенств, систем неравенству содержащих буквенные коэффициенты.

ОСНОВНЫЕ ПОНЯТИЯ. ЧИСЛОВЫЕ ФУНКЦИИ

Выпускник научится:

- 1) понимать и использовать функциональные понятия и язык (термины, символические обозначения);
- 2) строить графики элементарных функций; исследовать свойства числовых функций на основе изучения поведения их графиков;
- 3) понимать функцию как важнейшую математическую модель для описания процессов и явлений окружающего мира, применять функциональный язык для описания и исследования зависимостей между физическими величинами.

Выпускник получит возможность научиться:

- I. проводить исследования, связанные с изучением свойств функций, в том числе с использованием компьютера; на основе графиков изученных функций строить более сложные графики (кусочнозаданные, с «выколотыми» точками и т. п.);
- 2. использовать функциональные представления и свойства функций для решения математических задач из различных разделов курса.

ЧИСЛОВЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ

Выпускник научится:

- 1) понимать и использовать язык последовательностей (термины, символические обозначения);
- 2) применять формулы, связанные с арифметической и геометрической прогрессиями, и аппарат, сформированный при изучении других разделов курса, к решению задач, в том числе с контекстом из реальной жизни.

Выпускник получит возможность научиться:

- I. решать комбинированные задачи с применением формул п-го члена и суммы первых п членов арифметической и геометрической прогрессий, применяя при этом аппарат уравнений и неравенств;
- 2. понимать арифметическую и геометрическую прогрессии как функции натурального аргумента; связывать арифметическую прогрессию с линейным ростом, геометрическую с экспоненциальным ростом.

ОПИСАТЕЛЬНАЯ СТАТИСТИКА

Выпускник научится использовать простейшие способы представления и анализа статистических данных.

Выпускник получит возможность приобрести первоначальный опыт организации сбора данных при проведении опроса общественного мнения, осуществлять их анализ, представлять результаты опроса в виде таблицы, диаграммы.

СЛУЧАЙНЫЕ СОБЫТИЯ И ВЕРОЯТНОСТЬ

Выпускник научится находить относительную частоту и вероятность случайного события.

Выпускник получит возможность приобрести опыт проведения случайных экспериментов, в том числе с помощью компьютерного моделирования, интерпретации их результатов.

КОМБИНАТОРИКА

Выпускник научится решать комбинаторные задачи на нахождение числа объектов или комбинаций.

Выпускник получит возможность научиться некоторым специальным приёмам решения комбинаторных задач.

На изучение геометрии в 9 классе отводится 2 часа в неделю, 68 часов в год. Такое количество часов совпадает с количеством часов, представленных в рабочей программе к учебнику Л.С. Атанасяна (Бутузов В.Ф. Геометрия. Рабочая программа к учебнику Л.С. Атанасяна и других. 7-9 классы: пособие для учителей общеобразовательных учреждений / В.Ф. Бутузов. — 2-е изд., дораб. — М.: Просвещение, 2013. — 31 с.).

НАГЛЯДНАЯ ГЕОМЕТРИЯ

Выпускник научится:

- распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры;
- распознавать развертки куба, прямоугольного параллелепипеда, правильной пирамиды, цилиндра и конуса;
- определять по линейным размерам развертки фигуры линейные размеры самой фигуры и наоборот;
 - вычислять объем прямоугольного параллелепипеда; Выпускник получит возможность:
- вычислять объемы пространственных геометрических фигур, составленных их прямоугольных параллелепипедов;
 - углубить и развить представления о пространственных геометрических фигурах;
 - применять понятие развертки для выполнения практических расчетов.

ГЕОМЕТРИЧЕСКИЕ ФИГУРЫ

Выпускник научится:

- пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения;
- распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации;
- находить значения длин линейных элементов фигур и их отношения, градусную меру углов от 0° до 180°, применяя определения, свойства и признаки фигур и их элементов, отношения фигур (равенство, подобие, симметрии, поворота, параллельный перенос);
- оперировать с начальными понятиями тригонометрии и выполнять элементарные операции над функциями углов;
- решать задачи на доказательство, опираясь на изученные свойства фигур и отношений между ними и применяя изученные методы доказательств;
- решать несложные задачи на построение, применяя основные алгоритмы построения с помощью циркуля и линейки;
 - решать простейшие планиметрические задачи в пространстве.

Выпускник получит возможность:

- овладеть методами решения задач на вычисления и доказательства: методом от противного, методом подобия, методом перебора вариантов и методом геометрических мест точек;
- приобрести опыт применения алгебраического и тригонометрического аппарата и идей движения при решении геометрических задач;
- овладеть традиционной схемой решения задач на построение с помощью циркуля и линейки: анализ, построение, доказательство и исследование;
- научиться решать задачи на построение методом геометрического места точек и методом подобия;
- приобрести опыт исследования свойств планиметрических фигур с помощью компьютерных программ;
- приобрести опыт выполнения проектов по темам: «Геометрические преобразования на плоскости», «Построение отрезков по формуле».

ИЗМЕРЕНИЕ ГЕОМЕТРИЧЕСКИХ ВЕЛИЧИН

Выпускник научится:

- использовать свойства измерения длин, площадей и углов при решении задач на нахождение длины отрезка, длины окружности, длины дуги окружности, градусной меры угла;
- вычислять длины линейных элементов фигур и их углы, используя формулы длины окружности и длины дуги окружности, формулы площадей фигур;
- вычислять площади треугольников, прямоугольников, параллелограммов, трапеций, кругов и секторов;
 - вычислять длину окружности, длину дуги окружности;
- решать задачи на доказательство с использованием формул длины окружности и длины дуги окружности, формул площадей фигур;
- решать практические задачи, связанные с нахождением геометрических величин (используя при необходимости справочники и технические средства);

Выпускник получит возможность:

- вычислять площади фигур, составленных их двух или более прямоугольников, параллелограммов, треугольников, круга и сектора;
- вычислять площади многоугольников, используя отношения равновеликости и раносоставленности;
- приобрести опыт применения алгебраического и тригонометрического аппарата и идей движения при решении задач на вычисление площадей многоугольников.

КООРДИНАТЫ

Выпускник научится:

- вычислять длину отрезка по координатам его концов; вычислять координаты середины отрезка;
- использовать координатный метод для изучения свойств прямых и окружностей; Выпускник получит возможность:
 - овладеть координатным методом решения задач на вычисление и доказательство;
- приобрести опыт использования компьютерных программ для анализа частных случаев взаимного расположения окружностей и прямых;
- приобрести опыт выполнения проектов на тему «Применение координатного метода при решении задач на вычисление и доказательство».

ВЕКТОРЫ

Выпускник научится:

- оперировать с векторами: находить сумму и разность двух векторов, заданных геометрически, находить вектор, равный произведению заданного вектора на число;
- находить для векторов, заданных координатами: длину вектора, координаты суммы и разности двух и более векторов, координаты произведения вектора на число, применяя при необходимости сочетательный, переместительный и распределительный законы;
- вычислять скалярное произведение векторов, находить угол между векторами, устанавливать перпендикулярность прямых.

Выпускник получит возможность:

- овладеть векторным методом для решения задач на вычисление и доказательство;
- приобрести опыт выполнения проектов на тему «Применение векторного метода при решении задач на вычисление и доказательство».

II. Содержание программы

Рациональные неравенства и их системы (16 ч)

Линейные и квадратные неравенства. Рациональные неравенства. Множества и операции над ними. Системы рациональных неравенств.

Векторы. (8 часов)

Понятие вектора. Равенство векторов. Сумма двух векторов. Законы сложения векторов. Вычитание векторов. Умножение вектора на число. Средняя линия трапеции.

Метод координат. (10 часов)

Разложение векторов по двум неколлинеарным векторам. Координаты векторов. Простейшие задачи в координатах. Уравнение линии на плоскости. Уравнение окружности. Уравнение прямой.

Системы уравнений. (15 ч)

Основные понятия. Методы решения систем уравнений. Системы уравнений как математические модели реальных ситуаций.

Соотношения между сторонами и углами треугольника. Скалярное произведение векторов. (11 часов)

Синус, косинус и тангенс угла. Основное тригонометрическое тождество. Формулы приведения. Площадь треугольника. Теорема синусов. Теорема косинусов. Угол между векторами. Скалярное произведение в координатах.

Числовые функции. (25 ч)

Определение числовой функции. Область определения. Область значений функций. Способы задания функций. Свойства функций. Четные и нечетные функции. Степенные функции с натуральными показателями 2 и 3, их графики и свойства. Графики функций $y=\sqrt{x}$, $y=\sqrt[g]{x}$, $y=\sqrt{x}$.

Длина окружности и площадь круга. (12 часов)

Правильный многоугольник. Окружность, описанная около правильного многоугольника. Окружность, вписанная в правильный многоугольник. Вычисление площади правильного многоугольника, его стороны и радиуса вписанной окружности. Длина окружности. Площадь круга. Свойства вписанного и описанного четырехугольника.

Числовые последовательности. (16 ч)

Понятие числовой последовательности. Задание последовательности рекуррентной формулой и формулой n-го члена.

Арифметическая и геометрическая прогрессии. Формулы n-го члена арифметической и геометрической прогрессий, суммы первых n членов. Изображение арифметической и геометрической прогрессий точками координатной плоскости. Линейный и экспоненциальный рост. Сложные проценты.

Движения. (6 часов)

Отображение плоскости на себя. Понятие движения. Параллельный перенос. Поворот.

Элементы комбинаторики, статистики и теории вероятностей. (12 ч)

Описательная статистика.. Представление данных в виде таблиц, графиков. диаграмм. Случайная изменчивость. Статистические характеристики набора данных: среднее арифметическое, медиана, наибольшее и наименьшее значения. размах. Представление о выборочном исследовании.

Случайные события и вероятность. Понятие о случайном опыте, случайном событии. Частота случайного события. Статистический подход к понятию вероятности. Вероятности противоположных событий. Независимые события. Умножение вероятностей. Достоверные и невозможные события. Равновозможность событий. Классическое определение вероятностей..

Комбинаторика. Решение комбинаторных задач перебором вариантов. Комбинаторное правило умножения, перестановки и факториал.

Начальные сведения из стереометрии (8 часов)

Многогранники. Предмет стереометрии Призма. Параллелепипед. Объём тела. Свойства прямоугольного параллелепипеда. Пирамида. Тела и поверхности вращения. Цилиндр. Конус. Сфера и шар.

Аксиомы планиметрии. (2 часа)

Повторение курса геометрии. (9 часов)

Обобщающее повторение. (18 ч)

ІІІ.Тематическое планирование

№п/п	Тема учебного занятия	Количество часов	Контроль
	Рациональные неравенства и их системы	– 16 часов	
1.	Линейные	3	
1.	и квадратные неравенства		
2.	Рациональные неравенства	5	
3.	Множества и операции над ними	3	
4.	Системы рациональных неравенств	4	
5.	1		К.р
6.	Повторение курса 8 класса	2	
7.	Понятие вектора.	2	
8.	Сложение и вычитание векторов	3	
9.	Умножение вектора на число. Применение векторов к решению задач Метод координат – 10 часов	3	
10.	Координаты вектора	2	
11.	Простейшие задачи в координатах	2	
12.	Уравнения окружности и прямой.	3	
13.	Решение задач	2	
14.	Контрольная работа по геометрии №1 «Векторы»	1	К.р
	Системы уравнений - 15 час	ОВ	
15.	Основные понятия	4	
16.	Методы решения систем уравнений	5	
17.	Системы уравнений как математические модели реальных ситуаций	5	
18.	Контрольная работа по алгебре №2 «Системы уравнений»	1	К.р
Соот	ношения между сторонами и углами треугольника. (векторов — 11 часов	Скалярное прог	ізведение
19.	Синус, косинус и тангенс угла.	3	
20.	Соотношения между сторонами и углами треугольника	4	
21.	Скалярное произведение векторов.	2	
22.	Решение задач	1	
23.	Контрольная работа по геометрии №2 «Соотношения между сторонами и углами треугольника. Скалярное произведение векторов»	1	К.р
24	Числовые функции – 25 часов	4	
24.	Определение числовой функции. Область определения, область задания функций.	4	
25.	Способы задания функций	2	
26.	Свойства функций	4	
27.	Четные и нечетные функции	3	
28.	Контрольная работа по алгебре №3 «Числовая	1	К.р
29.	функция» Функция $y=x^n(n \in N)$, их свойства и графики	4	
		3	
30.	Функция $y=x^{-n}(n \in N)$, их свойства и графики		
31.	Функция $y=\sqrt[3]{x}$, ее свойства и график	3	
32.	Контрольная работа № 4 «Степенная функция»	1	К.р
	Глава IV. Длина окружности и площадь кру	уга. 12 часов	